
Chapter 9 
Sleep, Ageing, and Cognitive Decline 

Krishna Melnattur 

9.1 Introduction 

This chapter focuses on changes in sleep architecture, physiology, and function in 
healthy ageing. We begin with a description of the phenomenology of age-dependent 
changes in sleep distribution and oscillations and discussion of potential under-
lying neurobiological mechanisms. We next consider two candidate consequences of 
sleep—glymphatic brain clearance and learning and memory. This chapter focuses 
largely on work on humans and rodents. However, in each section, we will also briefly 
consider parallels with invertebrate models. Specifically, we will draw comparisons 
with sleep in the fly Drosophila as a canonical example of an invertebrate. In the last 
20 years, Drosophila has emerged as powerful model to study sleep regulation and 
function and is certainly the best studied invertebrate sleep model. 

9.2 Age-Dependent Changes in Sleep Distribution 
and Oscillations 

Sleep in humans undergoes characteristic ontogenic changes, with the prototypical 
young adult pattern of sleep distribution and oscillatory activity only emerging by 
late adolescence. 

Newborn infants spend a large proportion of their day asleep (16–18 h). Infant 
sleep is, however, not consolidated into a single sleep bout. Instead, bouts of sleep 
alternate with bouts of feeding. Further, each sleep cycle lasts ~ 50 min and consists 
of equal amounts of rapid eye movement (REM) sleep and non-rapid eye movement
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(NREM) sleep. Sleep onset is also frequently into REM sleep (Daftary et al. 2019; 
Grigg-Damberger et al. 2007; Grigg-Damberger 2016; Ohayon et al. 2004). Sleep 
stages in newborns and infants do not exhibit all of the characteristics seen in young 
adults. Muscle atonia is thus incomplete in infant REM sleep, and the slow waves 
that are an important characteristic of NREM sleep in adults (see below) are not 
present in every cycle (Grigg-Damberger 2016; Bes et al. 1991). REM and NREM 
sleep in infants are classified as active sleep and quiet sleep to reflect this fact (Grigg-
Damberger 2016). 

By one to four years of age, total sleep time decreases to about 11–12 h a day. 
Sleep is also more consolidated, consisting of one primary sleep bout at night, and 
one to two naps during the day (Ohayon et al. 2004). Important differences remain 
in characteristics of different sleep stages in young children versus young adults. 
NREM is typically much deeper in young children versus young adults (Busby and 
Pivik 1983). 

As children get older sleep duration further decreases. Teenage sleep shares many 
traits with sleep in young adults discussed below, with the important exception that 
the timing of sleep is delayed. 

In young adults, sleep is characterised by a single consolidated bout at night and 
a regular cyclical pattern of alternation between sleep stages. Each sleep cycle lasts 
~ 90 min, with a regular alternation between NREM and REM sleep (Fig. 9.1a). The 
sleep stages are defined by characteristic signatures in the electro encephalogram 
(Carskadon and Dement 2016).

9.2.1 Age-Dependent Changes in Sleep 

Healthy normal ageing is associated with characteristic changes in sleep duration, 
quality, and timing. Overall sleep duration decreases in older adults. Sleep is more 
fragmented and associated with more awakenings and arousals. Further, the timing 
of sleep onset and offset is advanced, and sleep latency is increased. In addition, 
ageing is also associated with changes in sleep stage architecture. Thus, ageing is 
associated with lower amounts of deep slow wave sleep, more time in lighter NREM 
stages 1 and 2, and fewer NREM-REM cycles (Fig. 9.1) (Landolt et al. 1996; Zepelin 
et al. 1984; Feinberg and Carlson 1968; Kales et al. 1967; Klerman and Dijk 2008; 
Van Cauter et al. 2000). 

Further, it is not just sleep at night that is altered with age. Daytime sleep is 
also altered with age. Older adults report increased frequency of daytime naps, and 
daytime sleepiness severe enough to impair normal functioning (Foley et al. 2007). 

9.2.1.1 Anatomical Basis of Age-Dependent Sleep Changes 

What might be the neurobiological basis for these phenomena? We begin our 
discussion of this question, with a little historical background.
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Fig. 9.1 a Sleep hypnogram of a young adult. Sleep consists of a single consolidated bout at night 
and is characterised by a ~ 90 min cycle of NREM and REM sleep (orange). The relative time spent 
in REM sleep increases through the night, concomitant with a decrease in time spent in deeper 
NREM stages. b Sleep hypnogram of an older adult. Sleep of older adults is characterised by longer 
sleep latency, more fragmented sleep with greater awakenings from sleep, and less time in deeper 
slow wave sleep stages. Figure adapted from Mander et al. (2017)

The study of the anatomical basis of sleep and wakefulness in mammals owes 
a lot to an unfortunate epidemic of encephalitis lethargica almost a 100 years ago. 
Upon examining encephalitis patients who presented with insomnia, von Economo 
observed inflammatory lesions in the preoptic area (POA). Patients with hypersomnia 
presented with lesions in the posterior hypothalamus (PH) (von Economo 1930). 
Based on these results, von Economo postulated a sleep-promoting area in the POA 
and a wake promoting region in the PH. Subsequent lesion studies in animal models 
supported this idea and suggested a model, whereby sleep-promoting POA neurons 
inhibit arousal promoting PH neurons (Nauta 1946). Around the same time, electrical 
stimulation of the reticular formation was shown to induce a wake like state in 
anaesthetised cats (Moruzzi and Magoun 1949). 

Since these classic studies, application of more modern circuit dissection tech-
niques has led to a more nuanced understanding of the circuitry for sleep and 
wakefulness (Scammell et al. 2017; Szymusiak and McGinty 2016) (Fig. 9.2). The 
sleep-promoting area in the POA was shown to comprise of GABA and galanin-
ergic neurons in the ventrolateral preoptic area (VLPO) (Kroeger et al. 2018; Sherin 
et al. 1996). The idea of an undifferentiated reticular formation has been replaced 
by the identification of multiple arousal promoting systems distributed along the 
neuraxis. These include serotonergic neurons from the Dorsal Raphae, noradrenergic 
neurons in the Locus Coeruleus, dopaminergic neurons from Ventro Tegmental Area,
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histaminergic neurons from the Tubero Mammillary Nucleus, orexinergic neurons 
in the hypothalamus, and cholinergic neurons in the basal forebrain. These arousal 
promoting systems innervate broadly in the cortex enabling the brain to transition 
to a wake state. Interestingly, wake and sleep-promoting systems inhibit each other, 
resulting in what has been termed a flip-flop switch, that enables rapid transitions 
between sleep and wake with little time spent in an in-between state (Saper et al. 
2010). 

Perhaps unsurprisingly, ageing affects both sleep and arousal promoting centres. 
The number of galanin expressing neurons in the POA was shown to decline with 
age in humans, with the severity of loss correlating with extent of sleep fragmen-
tation (Lim et al. 2014). Further, the number of orexinergic neurons in the lateral 
hypothalamus was also reduced in both aged rodents and older humans (Kessler et al. 
2011; Hunt et al. 2015). A recent study in rodents found that neuronal excitability 
of orexinergic neurons was causally linked to age-dependent sleep disruptions (Li 
et al. 2022). Oxerinergic neurons in aged mice were found to have a lower resting 
membrane potential. They were also found to express lower levels of the voltage 
gated potassium channel subfamily Q member 2 subunit (KCNQ2) and a lower basal 
M current (Im). Disrupting KCNQ2 in young mice fragmented sleep, conversely 
increasing KCNQ2 activity increased sleep stability in aged mice (Li et al. 2022). 
These results provide an interesting and detailed mechanistic explanation for sleep

Fig. 9.2 Schematic highlighting select sleep and arousal promoting nuclei in the mouse brain. 
Green is arousal promoting monoaminergic nuclei, including norepinephrine secreting nuclei in the 
Locus Coeruleus, serotonergic neurons in the Dorsal Raphae, dopaminergic neurons in the Ventro 
Tegmental Area, and histaminergic neurons in the TuberoMammalary Nucleus. Pink is arousal 
promoting orexinergic neurons of the Lateral Hypothalamus. Blue is the sleep-promoting GABA 
and galanin positive neurons of the ventrolateral preoptic area. Sleep and arousal promoting neurons 
have mutually inhibitory connections that result in a sleep–wake ‘flip-flop’ switch that enables rapid 
transitions between sleep and wake. Figure adapted from Scammell et al. (2017) 
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deficits in ageing and suggest potential therapeutic avenues for improving sleep in 
older human subjects. 

Another, non-exclusive possibility to explain some of the age related sleep deficits 
is changes in neurogenesis. Neurogenesis has been reported in the hypothalamus of 
rodents (Lee and Blackshaw 2012; Haan et al. 2013; Robins et al. 2013). Ageing 
affects hypothalamic neurogenesis (Zhang et al. 2017; Matsuzaki et al. 2015). 
Chronic suppression of neurogenesis and gliogenesis by administration of an antim-
itotic agent disrupted sleep in young animals (Kostin et al. 2019). These animals 
exhibited reduced NREM and REM sleep amount, sleep fragmentation, and altered 
sleep homeostasis—all sleep deficits also associated with ageing (Kostin et al. 2019). 
The molecular processes that underlie the effects of ageing on neurogenesis are not 
very well understood. However, there are some hints that changes in neuroinflamma-
tory products might explain some of these effects (Rosano et al. 2012; Ekdahl et al. 
2003, 2009; Vallières et al. 2002). Further, systemic changes, such as in exercise and 
calorie restriction, that reduce inflammation, can improve neurogenesis and mitigate 
sleep deficits (Varrasse et al. 2015; Stangl and Thuret 2009; Blanco-Centurion and 
Shiromani 2006; Salin-Pascual et al. 2002). These manipulations, however, can affect 
multiple systems. The field will likely thus benefit from a more targeted means of 
enhancing neurogenesis, which would be expected to help better establish a causal 
link between neurogenesis and ageing-related deficits. 

9.2.2 Age-Dependent Changes in Sleep Oscillations 

In addition to changes in overall sleep amounts, substantial changes are observed in 
the electrical oscillations of sleep–slow wave activity and sleep spindles. 

9.2.2.1 Changes in Slow Waves with Age 

One important measure of slow waves is the spectral power in the slow and delta 
frequency range (0.5–4 Hz) that has been termed slow wave activity (SWA). SWA 
is most associated with drive to sleep and the phenomenon of homeostatic rebound 
sleep. Sleep pressure or the drive to sleep is classically modelled as increasing in 
proportion to time spent awake and dissipating during subsequent sleep (Borbély 
1982; Borbely and Tobler 2011). SWA is highest in the early part of the sleep period 
and reduces over the length of the sleep period as sleep pressure dissipates. 

Substantial SWA reductions are seen in baseline sleep of older adults. Further, 
the process of homeostatic SWA increase and decrease is also altered in older adults. 
Specifically, homeostatic increases in SWA in response to time awake are blunted 
(Landolt and Borbély 2001; Münch et al. 2004), and the slope of SWA dissipation 
across the night is also shallower (Landolt and Borbély 2001; Landolt et al. 1996). 

SWA changes are accompanied by changes in slow wave amplitude and density. 
Both amplitude and density of slow waves are reduced in older adults (Carrier et al.
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2011; Dubé et al. 2015). These changes suggest that ageing might diminish synchro-
nised firing—the switching between a depolarised up state and a hyperpolarised 
down state that might underlie slow wave changes. 

9.2.2.2 Neurobiological Basis of Slow Wave Impairments 

In mammals, adenosine in the basal forebrain plays an important role in sleep home-
ostasis (Porkka-Heiskanen et al. 1997). Prolonged wakefulness increases adeno-
sine levels in the basal forebrain. Adenosine levels in the basal forebrain, however, 
appeared higher in older rodents versus younger siblings (Mackiewicz et al. 2006; 
Murillo-Rodriguez et al. 2004). This finding is surprising given the age-dependent 
impairments in homeostasis discussed above. However, there is also age-dependent 
loss of adenosine A1 receptors and A1 receptor gene expression (Ekonomou et al. 
2000; Pagonopoulou and Angelatou 1992; Cheng et al. 2000). This receptor loss may 
decrease sensitivity to adenosine and thus may form the basis for the observed age-
dependent defects in homeostasis. Interestingly, age-dependent impairments in slow 
wave features correlated with structural atrophy in prefrontal cortex (PFC) areas in 
older adult humans (Mander et al. 2013; Varga et al. 2016). These structural changes 
thus might also at least partially explain the observed defects in slow wave features 
discussed above. 

9.2.2.3 Changes in Sleep Spindles with Age 

Sleep spindles are oscillatory activity in the 12–15 Hz range, thought to be gener-
ated by thalamocortical activity (Huguenard and McCormick 2007; De Gennaro and 
Ferrara 2003). Power in this 12–15 Hz range is decreased in older versus younger 
adults (Dijk et al. 1989; Landolt et al. 1996). This power reduction could be explained 
in part by a reduction in the number of generated spindles (Mander et al. 2014; Martin 
et al. 2013). Other features of the spindle waveform, e.g. duration and peak amplitude 
are also decreased in older versus younger adults (Mander et al. 2014; Martin et al. 
2013). 

9.2.2.4 Neurobiological Basis of Spindle Impairments 

What might be the neurobiological basis for age-dependent spindle defects? This is 
less clear. Reductions in hippocampal grey matter predict spindle defects in older 
adult humans (Fogel et al. 2017). Although spindles are classically thought to result 
from thalamocortical activity, they are also linked to burst firing of sharp wave 
ripples in hippocampus so these structural defects in the hippocampus could plausibly 
underlie the observed defects in spindles (Fell et al. 2001).
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9.2.3 Connection to Invertebrates 

Drosophila was also shown to exhibit age-dependent changes in sleep amount, 
quality, and homeostasis (Shaw et al. 2000; Vienne et al. 2016; Melnattur et al. 
2021). The anatomical basis of these age-dependent sleep changes in the fly has not 
been systematically investigated. The extrinsic fan-shaped lateral (ExFl2) neurons 
of the dorsal fan shaped body are a particularly interesting candidate in this regard 
(Donlea et al. 2011). These sleep-promoting neurons secrete GABA and allatostatin 
(Ni et al.  2019; Donlea et al. 2018). Allatostatin is the invertebrate analogue of 
mammalian galanin. Further, they have been proposed to form the output arm of the 
fly homeostat and are thought to be analogous to mammalian VLPO neurons (Liu 
et al. 2012, 2016; Donlea et al. 2011, 2014, 2018; Pimentel et al. 2016). It would 
thus be interesting to investigate whether there is age-dependent loss of these ExFl2 
neurons in flies as has been reported for VLPO neurons in mammals. 

9.3 Consequences of Age-Dependent Sleep Loss 

The previous sections clearly demonstrate that ageing leads to sleep deficits. But are 
these defects of any consequence? To get at this question, we need to examine some 
functional outcome of sleep (Dissel et al. 2015). 

9.3.1 Glymphatic Clearance 

One interesting idea about the function of sleep comes from a flurry of papers over the 
last 10 years that describe a system for fluid flow in the brain that has been termed the 
glymphatic system (Nedergaard and Goldman 2020). To appreciate the significance 
of these discoveries, we first have to take a brief detour into anatomy. Brain neuropil 
lacks lymphatic capillaries that enable fluid flow as is common in other organ systems. 
Directional flow is instead achieved by means of astrocytic processes that constitute 
a glia—lymphatic or ‘glymphatic’ conduit for cerebrospinal fluid (CSF) flow (Iliff 
et al. 2012; Xie et al. 2013). CSF flows into periarterial spaces in the brain driven by 
arterial pulsations that result from pulse waves along arteries driven by heart beats 
(Mestre et al. 2018; Iliff et al. 2013). Perivascular spaces are channels that run along 
the vasculature enclosed by endfeet of astrocytes (Wardlaw et al. 2020). Astrocytic 
endfeet expresses the water channel Aquaporin 4 (AQP4) (Hasegawa et al. 1994; 
Jung et al. 1994; Nielsen et al. 1997; Rash et al.  1998). Glymphatic flow consists of 
CSF entering periarterial space, mixing with interstitial fluid (ISF), carrying solutes 
and exiting the brain via perivenous spaces, cranial nerves, etc. Importantly, for 
the purposes of this review, glymphatic flow was dramatically higher (up to a fold 
higher) in sleep versus wake (Xie et al. 2013). This increase in flow also correlated
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with increased AQP4 at astrocytic endfeet. Further, the flow was AQP4 dependent 
as deletion of AQP4 dramatically reduced flow (Iliff et al. 2012). 

In parallel, recent studies reported the discovery of lymphatic vessels in the 
meningeal dura and clearance of injected tracers via lymphatic vessels (Aspelund 
et al. 2015; Louveau et al. 2015). Glymphatic clearance along perivenous spaces 
could drain into sinus lymphatics as veins merge (Fig. 9.3a) (Wardlaw et al. 2020;Ma  
et al. 2017), suggesting an anatomical connection between glymphatic and lymphatic 
systems.

9.3.1.1 Impairment of Glymphatic Flow with Age 

Glymphatic flow is reduced with sleep deprivation (Plog et al. 2015; Eide et al. 2021) 
and with ageing (Da Mesquita et al. 2018; Kress et al. 2014; Zhou et al. 2020). Ageing 
was also associated with mislocalisation of AQP4 away from endfeet towards soma 
and perisynaptic processes (Kress et al. 2014). Tortuosity of the vasculature was 
also increased in aged animals, providing another mechanism by which CSF flow 
could be reduced with age (Fig. 9.3e). Further, brain lymphatic vessels also degen-
erate with age (Ma et al. 2017; Ahn et al. 2019), thereby possibly providing another 
mechanism for reduction of flow. These age-dependent reductions in flow could 
have important consequences as glymphatic clearance has been implicated in clear-
ance of toxic metabolites such Amyloidβ (Aβ)—the toxic fragment associated with 
Alzheimer’s disease (Iliff et al. 2012; Xie et al. 2013). Decreased glymphatic flow 
increased Aβ (Iliff et al. 2012; Xie et al. 2013), conversely increased Aβ decreased 
flow (Da Mesquita et al. 2018; Peng et al. 2016), suggesting a vicious cycle. Indeed, 
polymorphisms in AQP4 are also linked to Alzheimer’s disease (Zeppenfeld et al. 
2017; Burfeind et al. 2017). 

9.3.1.2 Connection to Invertebrates 

A sleep stage associated with brain clearance was recently reported in Drosophila 
(van Alphen et al. 2021). This sleep stage was defined by characteristic proboscis 
extension and retraction movements and elevated arousal thresholds. The proboscis 
extensions appear to causally drive haemolymph flow facilitating clearance and 
supported recovery from brain injury, suggesting parallels with mammalian glym-
phatic clearance (van Alphen et al. 2021). 

9.3.2 Learning and Memory 

Brain clearance is clearly one important function of sleep. Another very influential 
theory of sleep function is that sleep is critical for learning and memory (Diekelmann 
and Born 2010; Walker and Stickgold 2004).
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Fig. 9.3 a Anatomy of glymphatic and meningeal lymphatic systems. Arrows depict direction of 
CSF flow. Arteries are in red, veins in dark blue, and lymph vessels in light blue. Figure adapted 
from (Iliff et al. 2015). b–e Insets highlighting the glymphatic system that facilitates fluid flow in 
the neuropil. Astrocytic endfeet tile the vasculature, astrocytic processes create a conduit for CSF 
+ ISF flow across the neuropil. Increased AQP4 at astrocytic endfeet during sleep (b) versus wake 
(c) facilitates increased fluid flow. AQP4 is mislocalised away from endfeet towards the soma in old 
(e) versus young (d) animals. AQP4 mislocalisation combined with arterial tortuosity decreases fluid 
flow in old versus young animals. b–e Artery—red, Veins—Blue, astrocytes—green, AQP4—gold. 
Figure adapted from Nedergaard and Goldman (2020)
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9.3.2.1 Learning 

In humans, although sleep supports many kinds of memories, hippocampus-
dependent declarative memories appear to particularly benefit from sleep (Diekel-
mann and Born 2010). Thus, sleep loss in young adults was shown to impair learning 
of new episodic memories and verbal memories (Yoo et al. 2007; Drummond et al. 
2000). Ageing also similarly disrupted encoding of hippocampus-dependent declar-
ative memories and spatial memories (Jennings and Jacoby 1997; Toth and Parks 
2006; Newman and Kaszniak 2000). 

9.3.2.2 Age-Dependent Learning Defects 

In older adults, the extent of overnight sleep impairments correlated with the extent of 
next day encoding impairments (Lo et al. 2016; Cavuoto et al. 2016). Consistent with 
these findings, in rodents, ageing disrupted hippocampus-dependent spatial learning 
but not hippocampus independent non-spatial learning (Rapp et al. 1987; Barnes 
1979; Bach et al. 1999). 

9.3.2.3 Memory Consolidation 

Sleep is clearly important for learning new information, but the idea that sleep is 
critical for memory and plasticity perhaps only really took flight after the discovery 
of hippocampal place cell replay in rodents by Wilson, McNaughton, and colleagues 
(Wilson and McNaughton 1993, 1994). In these classic experiments, rats were trained 
to run along a linear track. The trajectory of the rat along the track was shown to 
be represented as a sequence of activation of place cells in the rat’s hippocampus 
(Wilson and McNaughton 1993). This sequence was shown to be replayed during 
subsequent sleep in a kind of ‘fast-forward’ replay (Wilson and McNaughton 1994; 
Lee and Wilson 2002; Nadasdy et al. 1999). Hippocampal replay was accompanied 
by sequence reactivations in the cortex, and this dialogue between hippocampus and 
cortex consolidated the experience into a memory (Siapas and Wilson 1998; Sirota  
et al. 2003; Ji and Wilson 2007; Rothschild et al. 2017). Further, disrupting sleep-
dependent replay impaired memory, thus establishing causality (Girardeau et al. 
2009; Ego-Stengel and Wilson 2010). 

9.3.2.4 Age-Dependent Memory Consolidation Defects 

Ageing impaired sleep-dependent sequence reactivation in rodents and resulted in 
lower memory scores (Gerrard et al. 2008). Ageing was also shown to impair long-
term potentiation and Ca2+ signalling in hippocampal neurons (Barnes 1988; de  
Souza et al. 2012). Further, in older adult humans, impairment in SWA was associated
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with a continued reliance on hippocampal storage rather than cortical representations 
(Mander et al. 2013) indicating that ageing might disrupt replay in humans as well. 

9.3.2.5 Age-Dependent Declines in Hippocampal Neurogenesis 

In small mammal systems, adult neurogenesis has been reported in the dentate gyrus 
(DG) of the hippocampus (Altman and Das 1965, 1967; Caviness 1973, Guéneau 
et al. 1982). Neurogenesis in the DG has been associated with context encoding 
and memory, including REM sleep-dependent memory consolidation (Shors et al. 
2001; Danielson et al. 2016; Kumar et al. 2020). Neurogenesis in rodents is impaired 
with sleep deprivation and fragmentation (Guzman-Marin et al. 2007; 2003). Ageing 
also impairs rate of neurogenesis in the DG at least in rodents (Seki and Arai 1995; 
Kuhn et al. 1996). Impairments in neurogenesis might thus explain some of the age-
related cognitive deficits. That said, clearly not all hippocampal-dependent memories 
require neurogenesis (Shors et al. 2002). Further, the extent of neurogenesis in the 
adult human hippocampus remains somewhat unclear (Sorrells et al. 2018; Boldrini 
et al. 2018). Additional experiments might help clarify the roles of neurogenesis in 
age-related impairments in cognition and sleep-dependent processes. 

9.3.2.6 Enhancing Sleep to Restore Learning 

Ageing clearly impairs sleep, learning, and sleep-dependent memories. This suggests 
that enhancing sleep could potentially be a viable strategy to restore functioning to 
aged brains. Indeed enhancing sleep of older adults was shown to improve memory 
(Papalambros et al. 2017; Westerberg et al. 2015). 

9.3.2.7 Connection to Invertebrates 

Sleep is critical for learning and memory in Drosophila as well (Dissel et al. 2015). 
Flies also exhibit age-dependent declines in learning, including spatial learning 
(Tamura et al. 2003; Rieche et al. 2018; Melnattur et al. 2021). Interestingly, 
enhancing sleep of aged flies was sufficient to ameliorate age-dependent spatial 
learning defects (Melnattur et al. 2021), indicating that in flies as in mammals, sleep 
can restore functioning to impaired brains. Enhancing sleep might thus be widely 
applicable as a viable therapeutic strategy in a range of different contexts. 

9.4 Conclusions 

Age-dependent changes in sleep architecture and physiology are fairly well charac-
terised. The precise neurobiological mechanisms underlying these changes in sleep
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and sleep outcomes are still being worked out. The emergence of powerful inverte-
brate models of sleep such as the fly Drosophila holds promise as vehicles to solve 
some of these problems. 
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